Distribution Analysis and Ranking Analysis of Poverty Data From Three Data Sources in Bekasi Regency

Authors

  • Beny Cahyadie IPB University, Bogor, Indonesia
  • Bambang Juanda IPB University, Bogor, Indonesia
  • Akhmad Fauzi IPB University, Bogor, Indonesia
  • Rilus A. Kinseng IPB University, Bogor, Indonesia

DOI:

https://doi.org/10.21787/jbp.15.2023.453-466

Keywords:

three data sources, data ranking, precision data, PROMETHEE

Abstract

In implementing evidence-based policies, it is necessary to support poverty data that is precise, accurate, and consistent. The goal is that various assistance, such as social assistance, PKH, groceries, pre-employment, and other subsidies, will be right on target for people experiencing poverty. The diversity of poverty data sources will have implications for the inaccuracy of targeting social assistance recipients. Until now, there are still three sources of poverty data, namely the Statistics Indonesia, the Ministry of Social Affairs (Kemensos) with Integrated Data on Social Welfare (DTKS), and TNP2K, which is now under the Coordinating Ministry for Human Development and Culture (Kemenko KMK) which also releases data targeting the Acceleration of Extreme Poverty Elimination (P3KE). The purpose of this study is to analyze the distribution of poverty data and rank analysis of poverty data from three data sources in the Bekasi Regency. The analysis method used ArcGIS 10.4 software and the administrative map shapefile for the Bekasi Regency area. In the ranking analysis of poverty data from three data sources in each sub-district in Bekasi Regency, the Preference Ranking Organization Methods For Enrichment Evaluation (PROMETHEE) method was used. The results of the analysis showed that the distribution of P3KE data is 1,317,098 people spread by decile-1 to decile-4 in all sub-districts of Bekasi Regency. Statistics Indonesia data is 229,367 people spread across each sub-district, and the number of DTKS in Bekasi Regency is 1,035,402 people, with the most distribution of data in Babelan District, namely 110,867 people out of 34,009. While the best ranking of the three sources of poverty data is Central Cikarang, Pebayuran District (0.7273), North Tambun (0.6364), Cibitung and Karang Bahagia (0.4242), North Cikarang (0.3939), South Tambun (0 .3636), Sukatani (0.2121), Serang Baru (0.1515), West Cikarang (0.1212), Tarumajaya (0.0909), East Cikarang (0.0606).

Downloads

Download data is not yet available.

References

Antlöv, H., Wetterberg, A., & Dharmawan, L. (2016). Village Governance, Community Life, and the 2014 Village Law in Indonesia. Bulletin of Indonesian Economic Studies, 52(2), 161–183. https://doi.org/10.1080/00074918.2015.1129047

Brans, J. P., & Vincke, Ph. (1985). A Preference Ranking Organisation Method (the PROMETHEE Method for Multiple Criteria Decision-Making). Management Science, 31(6), 647–656. https://www.jstor.org/stable/2631441

Christia, A. M., & Ispriyarso, B. (2019). Desentralisasi Fiskal dan Otonomi Daerah di Indonesia. Law Reform, 15(1), 149–163. https://doi.org/10.14710/LR.V15I1.23360

Direktorat Jenderal Perimbangan Keuangan Kementerian Keuangan. (2015a, March 26). Rincian Dana Transfer ke Daerah dan Dana Desa pada Anggaran Pendapatan dan Belanja Negara – Perubahan (APBN-P) Tahun Anggaran 2015. Direktorat Jenderal Perimbangan Keuangan Kementerian Keuangan. https://djpk.kemenkeu.go.id/?p=2048

Direktorat Jenderal Perimbangan Keuangan Kementerian Keuangan. (2015b, November 17). Rincian Alokasi DAU, DAK FISIK, DID, dan Dana Desa Tahun Anggaran 2016. Direktorat Jenderal Perimbangan Keuangan Kementerian Keuangan. https://djpk.kemenkeu.go.id/?p=109

Direktorat Jenderal Perimbangan Keuangan Kementerian Keuangan. (2016, November 2). Transfer ke Daerah dan Dana Desa Tahun Anggaran 2017. Direktorat Jenderal Perimbangan Keuangan Kementerian Keuangan. https://djpk.kemenkeu.go.id/?p=3871

Direktorat Jenderal Perimbangan Keuangan Kementerian Keuangan. (2017, November 1). Rincian Transfer ke Daerah dan Dana Desa (TKDD) dalam APBN Tahun Anggaran 2018. Direktorat Jenderal Perimbangan Keuangan Kementerian Keuangan. https://djpk.kemenkeu.go.id/?p=5437

Direktorat Jenderal Perimbangan Keuangan Kementerian Keuangan. (2018, October 31). Rincian Alokasi Transfer ke Daerah dan Dana Desa (TKDD) dalam APBN Tahun Anggaran 2019. Direktorat Jenderal Perimbangan Keuangan Kementerian Keuangan. https://djpk.kemenkeu.go.id/?p=9370

Djuanda, B. (2023a, July 6). Pentingnya Data Presisi dalam Penanggulangan Kemiskinan. Republika. https://www.republika.id/posts/42813/pentingnya-data-presisi-dalam-penanggulangan-kemiskinan

Djuanda, B. (2023b, August 6). Urgensi Kebijakan Satu Data Kemiskinan. FEM – IPB University. https://fem.ipb.ac.id/index.php/2023/08/06/urgensi-kebijakan-satu-data-kemiskinan/

Fauzi, A. (2019). Teknik Analisis Berkelanjutan. PT. Gramedia Pustaka Utama.

Haliim, W. (2016). Poverty Reduction for Extremely Poor Households of Malang City by the Implementation of Program Keluarga Harapan. Jurnal Bina Praja: Journal of Home Affairs Governance, 8(2), 331–340. https://doi.org/10.21787/JBP.08.2016.331-340

Handoyo, F., Hidayatina, A., & Purwanto, P. (2021). The Effect of Rural Development on Poverty Gap, Poverty Severity and Local Economic Growth in Indonesia. Jurnal Bina Praja, 13(3), 369–381. https://doi.org/10.21787/jbp.13.2021.369-381

Kartika, R. (2012). Partisipasi Masyarakat dalam Mengelola Alokasi Dana Desa (ADD) di Desa Tegeswetan dan Desa Jangkrikan Kecamatan Kepil Kabupaten Wonosobo. Jurnal Bina Praja, 04(03), 179–188. https://doi.org/10.21787/JBP.04.2012.179-188

Kemenko PMK. (2023). Sebaran > Layanan Data P3KE. Layanan Data P3KE. https://p3ke.kemenkopmk.go.id/sebaran

Liu, Y., Liu, J., & Zhou, Y. (2017). Spatio-Temporal Patterns of Rural Poverty in China and Targeted Poverty Alleviation Strategies. Journal of Rural Studies, 52, 66–75. https://doi.org/10.1016/J.JRURSTUD.2017.04.002

Manoby, W. M., Afriyanni, A., Fitri, S. E., Pranasari, M. A., Setyaningsih, E., Rosidah, R., & Saksono, H. (2021). Digital Village: The Importance of Strengthening Village Resilience in the Digital Age. Jurnal Bina Praja, 13(1), 53–63. https://doi.org/10.21787/jbp.13.2021.53-63

Masbiran, V. U. K., Murliasari, R., Afriyanni, & Wulandari, S. N. (2021). Constraint and Strategies Element for Increasing Effectiveness Village Fund Management Based Interpretive Structural Modelling. Jurnal Bina Praja, 13(3), 445–457. https://doi.org/10.21787/jbp.13.2021.445-457

Matondang, E. (2017). Finding Out the Potency of Nusa Tenggara Timur in Poverty Allevation. Jurnal Bina Praja: Journal of Home Affairs Governance, 9(2), 231–242. https://doi.org/10.21787/JBP.09.2017.231-242

Murliasari, R. (2021). Implementation of Village Fund Management Policy Affirmation in Village Development. Jurnal Bina Praja, 13(3), 555–567. https://doi.org/10.21787/jbp.13.2021.555-567

Oxfam. (2017). Menuju Indonesia yang Lebih Setara: Laporan Ketimpangan Indonesia.

Rahmawati, T. (2022). Nudge on Choice Architecture. Jurnal Bina Praja: Journal of Home Affairs Governance, 14(2), 239–250. https://doi.org/10.21787/JBP.14.2022.239-250

Saragi, N. B., Muluk, M. R. K., & Sentanu, I. G. E. P. S. (2021). Indonesia’s Village Fund Program: Does It Contribute to Poverty Reduction? Jurnal Bina Praja, 13(1), 65–80. https://doi.org/10.21787/jpb.13.2021.65-80

Sjaf, S., La Elson, Halim, L., & Godya, I. M. (2020). Data Desa Presisi. Penerbit IPB Press.

Stiglitz, J. E. (2002). Globalization and Its Discontents. W.W. Norton.

Suharyanto, S., & Sofianto, A. (2012). Model Pembangunan Desa Terpadu Inovatif di Jawa Tengah. Jurnal Bina Praja, 04(04), 251–260. https://doi.org/10.21787/JBP.04.2012.251-260

Downloads

Published

2023-12-29

How to Cite

Cahyadie, B., Juanda, B., Fauzi, A., & Kinseng, R. A. (2023). Distribution Analysis and Ranking Analysis of Poverty Data From Three Data Sources in Bekasi Regency. Jurnal Bina Praja, 15(3), 453–466. https://doi.org/10.21787/jbp.15.2023.453-466

Issue

Section

Articles

Most read articles by the same author(s)