Transparency Prediction of Fraud Violations as an Anti-corruption Culture

Experiment of Decision Tree

Authors

  • Zico Karya Saputra Domas Politeknik Keuangan Negara STAN
  • Subagio Politeknik Keuangan Negara STAN
  • M. Rizkiawan Politeknik Keuangan Negara STAN

DOI:

https://doi.org/10.21787/jbp.14.2022.289-300

Keywords:

corruption, anti-corruption, transparency, data mining, classification, decision tree

Abstract

Several prominent reports have highlighted the unsatisfactory level of anti-corruption transparency for the private sector in Indonesia. Hence, the anti-corruption vision is still an aspect that deserves to be campaigned for to form an advanced and just civilization. This study aims to obtain a pattern of knowledge in predicting the level of transparency of disclosure of fraud violations based on a data mining approach. The classification function algorithm in this study is a decision tree which is then compared with other classification function algorithms, naive Bayes, and k-in. The sample in this study is 141 companies combined in the construction, mining, and banking sectors, which are on the IDX for the 2019 period. As a result, the decision tree algorithm provides the second-best performance in predicting the level of corporate transparency, namely an accuracy of 70.92% and an AUC level of 0.740. Then in terms of different tests, the decision tree algorithm is in the same cluster as the algorithm with the best performance because the t-test results show no significant difference. Based on the pattern generated by the decision tree algorithm, the elements of opportunity, pressure, and arrogance are considered key factors in predicting the level of transparency of disclosure of fraud violations. One of them can be interpreted that a company that is supervised by a minimum of four independent commissioners means company tends to be predicted to be more daring in disclosing anti-corruption information in its annual report to the wider public data mining algorithms utilizing the advantages of each agency's internal data volume to map anti-corruption cultural socialization strategies in private sector companies.

Downloads

Download data is not yet available.

References

Abdullahi, R., & Mansor, N. (2015). Fraud Triangle Theory and Fraud Diamond Theory. Understanding the Convergent and Divergent for Future Research. International Journal of Academic Research in Accounting, Finance and Management Sciences, 5(4), 30–37. https://doi.org/10.6007/IJARAFMS/v5-i4/1823

ACFE. (2020). Report to the Nations: 2020 Global Fraud Study on Occupational Fraud and Abuse. https://legacy.acfe.com/report-to-the-nations/2020/

Argandoña, A. (2005). Private-to-Private Corruption. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.685864

Artiach, T., Lee, D., Nelson, D., & Walker, J. (2010). The Determinants of Corporate Sustainability Performance. Accounting & Finance, 50(1), 31–51. https://doi.org/10.1111/j.1467-629X.2009.00315.x

Bablani, A., Edla, D. R., & Dodia, S. (2018). Classification of EEG Data Using K-nearest Neighbor Approach for Concealed Information Test. Procedia Computer Science, 143, 242–249. https://doi.org/10.1016/j.procs.2018.10.392

Banerjee, R., Bourla, G., Chen, S., Kashyap, M., & Purohit, S. (2018). Comparative Analysis of Machine Learning Algorithms through Credit Card Fraud Detection. 2018 IEEE MIT Undergraduate Research Technology Conference (URTC), 1–4. https://doi.org/10.1109/URTC45901.2018.9244782

Bermúdez, J. R., López-Estrada, F. R., Besançon, G., Torres, L., & Santos-Ruiz, I. (2020). Leak-Diagnosis Approach for Water Distribution Networks based on a k-NN Classification Algorithm. IFAC-PapersOnLine, 53(2), 16651–16656. https://doi.org/10.1016/j.ifacol.2020.12.795

Bujlow, T., Riaz, T., & Pedersen, J. M. (2012). Classification of HTTP Traffic Based on C5.0 Machine Learning Algorithm. 2012 IEEE Symposium on Computers and Communications (ISCC), 000882–000887. https://doi.org/10.1109/ISCC.2012.6249413

Chen, S., Webb, G. I., Liu, L., & Ma, X. (2020). A Novel Selective Naïve Bayes Algorithm. Knowledge-Based Systems, 192(xxxx), 105361. https://doi.org/10.1016/j.knosys.2019.105361

Chi, C. W., Hung, K., Cheng, H. W., & Tien Lieu, P. (2015). Family Firms and Earnings Management in Taiwan: Influence of Corporate Governance. International Review of Economics & Finance, 36, 88–98. https://doi.org/10.1016/j.iref.2014.11.009

Christian, N., Basri, Y. Z., & Arafah, W. (2019). Analysis of Fraud Pentagon to Detecting Corporate Fraud in Indonesia. International Journal of Economics, Business and Management Research, 3(08), 1–13. https://www.researchgate.net/publication/335060762

Domas, Z. K. S., & Subagio. (2022). Fraud Hexagon Analysis on the Less-Transparent Anti-corruption Disclosures. 3rd National Conference Accounting and Fraud Auditing.

Fitri, F., Syukur, M., & Justisa, G. (2019). Do the Fraud Triangle Components Motivate Fraud in Indonesia? Australasian Accounting, Business and Finance Journal, 13(4), 63–72. https://doi.org/10.14453/aabfj.v13i4.5

Gorunescu, F. (2011). Data Mining (12th ed., Vol. 12). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19721-5

Itoo, F., Meenakshi, & Singh, S. (2021). Comparison and Analysis of Logistic Regression, Naïve Bayes and KNN Machine Learning Algorithms for Credit Card Fraud Detection. International Journal of Information Technology, 13(4), 1503–1511. https://doi.org/10.1007/s41870-020-00430-y

Khadafy, A. R., & Wahono, R. S. (2015). Penerapan Naive Bayes untuk Mengurangi Data Noise pada Klasifikasi Multi Kelas dengan Decision Tree. Journal of Intelligent Systems, 1(2), 136–142. https://journal.ilmukomputer.org/index.php?journal=jis&page=article&op=view&path%5B%5D=78

Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data Mining Techniques for the Detection of Fraudulent Financial Statements. Expert Systems with Applications, 32(4), 995–1003. https://doi.org/10.1016/j.eswa.2006.02.016

Kück, M., & Freitag, M. (2021). Forecasting of Customer Demands for Production Planning by Local k-nearest Neighbor Models. International Journal of Production Economics, 231, 107837. https://doi.org/10.1016/j.ijpe.2020.107837

Kusumosari, L. (2020). Analisis Kecurangan Laporan Keuangan Melalui Fraud Hexagon pada Perusahaan Manufaktur yang Terdaftar di Bursa Efek Indonesia Tahun 2014–2018 [Universitas Negeri Semarang]. http://lib.unnes.ac.id/40840/

Larose, D. T. (2006). Data Mining Methods and Models. John Wiley & Sons, Inc.

Li, T., Li, J., Liu, Z., Li, P., & Jia, C. (2018). Differentially Private Naive Bayes Learning Over Multiple Data Sources. Information Sciences, 444, 89–104. https://doi.org/10.1016/j.ins.2018.02.056

Lo, A. W. Y., Wong, R. M. K., & Firth, M. (2010). Tax, Financial Reporting, and Tunneling Incentives for Income Shifting: An Empirical Analysis of the Transfer Pricing Behavior of Chinese-Listed Companies. Journal of the American Taxation Association, 32(2), 1–26. https://doi.org/10.2308/jata.2010.32.2.1

Lokanan, M., & Sharma, S. (2018). A Fraud Triangle Analysis of the Libor Fraud. Journal of Forensic & Investigative Accounting, 10(2), 187–212. https://doi.org/10.25316/IR-1573

Malini, N., & Pushpa, M. (2017). Analysis on Credit Card Fraud Identification Techniques Based on KNN and Outlier Detection. 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), 255–258. https://doi.org/10.1109/AEEICB.2017.7972424

Matoussi, H., & Gharbi, I. (2011). Board Independence and Corporate Fraud: The Case of Tunisian Firms (No. 620; Economic Research Forum).

Mienye, I. D., Sun, Y., & Wang, Z. (2019). Prediction Performance of Improved Decision Tree-Based Algorithms: A Review. Procedia Manufacturing, 35, 698–703. https://doi.org/10.1016/j.promfg.2019.06.011

Nguyen, L. T. T., Vo, B., Hong, T.-P., & Thanh, H. C. (2012). Classification Based on Association Rules: A Lattice-Based Approach. Expert Systems with Applications, 39(13), 11357–11366. https://doi.org/10.1016/j.eswa.2012.03.036

Niazi, K. A. K., Akhtar, W., Khan, H. A., Yang, Y., & Athar, S. (2019). Hotspot Diagnosis for Solar Photovoltaic Modules Using a Naive Bayes Classifier. Solar Energy, 190(July), 34–43. https://doi.org/10.1016/j.solener.2019.07.063

Novitasari, A. R., & Chariri, A. (2018). Analisis Faktor-Faktor yang Mempengaruhi Financial Statement Fraud dalam Perspektif Fraud Pentagon. Diponegoro Journal of Accounting, 7(4), 1–15. https://ejournal3.undip.ac.id/index.php/accounting/article/view/25572

Pambudi, A. S. (2020). Analisis Pendeteksian Financial Statement Fraud Menggunakan Beneish M-Score Model dan Data Mining.

Perols, J. (2011). Financial Statement Fraud Detection: An Analysis of Statistical and Machine Learning Algorithms. AUDITING: A Journal of Practice & Theory, 30(2), 19–50. https://doi.org/10.2308/ajpt-50009

Pradana, E. (2018). Analisis Penerapan Adaptive Boosting (Adaboost) dalam Meningkatkan Performasi Algoritma C4.5. Sekolah Tinggi Teknologi Pelita Bangsa.

Puspitha, M. Y., & Yasa, G. W. (2018). Fraud Pentagon Analysis in Detecting Fraudulent Financial Reporting (Study on Indonesian Capital Market). International Journal of Sciences: Basic and Applied Research, 42(5), 93–109. https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/9628

Salim, F. (2018). Anti Corruption Measurements in Business: Transparency in Corporate Reporting (TRAC) and Beyond.

Sasongko, N., & Wijayantika, S. F. (2019). Faktor Resiko Fraud terhadap Pelaksanaan Fraudulent Financial Reporting (Berdasarkan Pendekatan Crown’s Fraud Pentagon Theory). Riset Akuntansi Dan Keuangan Indonesia, 4(1), 67–76. https://doi.org/10.23917/reaksi.v4i1.7809

Shaheen, M., Zafar, T., & Ali Khan, S. (2020). Decision Tree Classification: Ranking Journals Using IGIDI. Journal of Information Science, 46(3), 325–339. https://doi.org/10.1177/0165551519837176

Singh, D., Choudhary, N., & Samota, J. (2013). Analysis of Data Mining Classification With Decision Tree Technique. Global Journal of Computer Science and Technology Software & Data Engineering, 13(13), 1–5.

Sitorus, Z., Saputra S., K., & Sulistianingsih, I. (2021). C4.5 Algorithm Modeling for Decision Tree Classification Process Against Status UKM. Proceedings of the 3rd International Conference of Computer, Environment, Agriculture, Social Science, Health Science, Engineering and Technology - ICEST. https://doi.org/10.5220/0010046105360540

Soni, K. B., Chopade, M., & Vaghela, R. (2021). Credit Card Fraud Detection Using Machine Learning Approach. Applied Information System and Management (AISM), 4(2), 71–76. https://doi.org/10.15408/aism.v4i2.20570

Sopian, Pratama, R. S., & Subagio. (2020). The Indonesia’s Anti Corruption Strategies: A Gap Analysis to the UNCAC’S Preventive Measurarements. Test Engineering and Management, 83, 12087–12108. http://www.testmagzine.biz/index.php/testmagzine/article/view/5824

Sumanto, S., Marita, L. S., Mazia, L., & Ratnasari, T. W. (2021). Analisis Kelayakan Kredit Rumah Menggunakan Metode Naïve Bayes untuk Mengurangi Kredit Macet. Applied Information System and Management (AISM), 4(1), 17–22. https://doi.org/10.15408/aism.v4i1.20274

Syarif, L. M. (2021). Memaknai CPI 2020 yang Menurun. Kemitraan Partnership.

Tarjo, T., & Herawati, N. (2017). The Comparison of Two Data Mining Method to Detect Financial Fraud in Indonesia. GATR Accounting and Finance Review, 2(1), 01–08. https://doi.org/10.35609/afr.2017.2.1(1)

Transparency International. (2020). Corruption Perceptions Index. https://www.transparency.org/en/cpi/2020

Transparency International Indonesia. (2016). Transparency in Corporate Reporting.

Transparency International Indonesia. (2017). Transparency in Corporate Reporting: Perusahaan Terbesar Indonesia. https://ti.or.id/transparency-in-corporate-reporting/

Transparency International Indonesia. (2018). Transparency in Corporate Reporting.

Triguero, I., Garcíaâ€Gil, D., Maillo, J., Luengo, J., García, S., & Herrera, F. (2019). Transforming Big Data Into Smart Data: An Insight on the Use of the K-nearest Neighbors Algorithm to Obtain Quality Data. WIREs Data Mining and Knowledge Discovery, 9(2), 1–24. https://doi.org/10.1002/widm.1289

Vousinas, G. L. (2019). Advancing Theory of Fraud: The S.C.O.R.E. Model. Journal of Financial Crime, 26(1), 372–381. https://doi.org/10.1108/JFC-12-2017-0128

Wahono, R. S., Herman, N. S., & Ahmad, S. (2014). Neural Network Parameter Optimization Based on Genetic Algorithm for Software Defect Prediction. Advanced Science Letters, 20(10), 1951–1955. https://doi.org/10.1166/asl.2014.5641

Widodo, A., & Fanani, Z. (2020). Military Background, Political Connection, Audit Quality and Earning Quality. Jurnal Akuntansi, 24(1), 84–99. https://doi.org/10.24912/ja.v24i1.658

Wirawan, C. (2020). Teknik Data Mining Menggunakan Algoritma Decision Tree C4.5 untuk Memprediksi Tingkat Kelulusan Tepat Waktu. Applied Information System and Management (AISM), 3(1), 47–52. https://doi.org/10.15408/aism.v3i1.13033

Wu, W., Johan, S. A., & Rui, O. M. (2016). Institutional Investors, Political Connections, and the Incidence of Regulatory Enforcement Against Corporate Fraud. Journal of Business Ethics, 134(4), 709–726. https://doi.org/10.1007/s10551-014-2392-4

Downloads

Published

2022-09-21

How to Cite

Domas, Z. K. S., Subagio, & Rizkiawan, M. (2022). Transparency Prediction of Fraud Violations as an Anti-corruption Culture: Experiment of Decision Tree. Jurnal Bina Praja, 14(2), 289–300. https://doi.org/10.21787/jbp.14.2022.289-300

Issue

Section

Articles